ШКОЛА ТЕПЛОПУНКТАКласс для продолжающих обучение


ТЕПЛОСЧЕТЧИК В РАЗРЕЗЕ
Лекция 4: о расходомерах (продолжение)

Д. Л. Анисимов

Продолжаем разговор о преобразователях расхода (см. здесь) и от слов переходим к цифрам. Т.е. от терминологии — к метрологии. Ведь, как мы уже говорили ранее, из всех входящих в состав теплосчетчика элементов именно расходомеры притягивают к себе наиболее пристальное внимание и вызывают наибольшее количество вопросов по части точности измерений.


Метрологические характеристики расходомеров

В лекциях о термопреобразователях и датчиках давления тему метрологии мы почти не затрагивали. Возможно, это не совсем справедливо по отношению к данным средствам измерений, но у нас был на то свой резон. Дело в том, что измерения температуры и давления всем нам понятны и привычны: с ними мы сталкиваемся в быту ежедневно. И видимо поэтому претензии к точности таких измерений — в том числе и в узлах учета тепловой энергии — у нас возникают крайне редко. А вот измерения расхода — это совсем другое дело. Расход, если можно так сказать, неосязаем — поэтому мы часто подозреваем, что измеряем его неправильно. А значит, разбираясь с расходомерами, от метрологии уже никуда не денешься.

Несколько определений. Метрология — это наука об измерениях физических величин. Измерение — это сравнение физической величины с ее единицей или, другими словами, нахождение значения данной величины. Для измерений используются специальные технические средства, называемые средствами измерений. Характеристики средства измерений, влияющие на результаты (точность) измерений, называются метрологическими характеристиками. И метрологические характеристики любого средства измерений нормированы, т.е. «вписаны» в определенные рамки. Для того, чтобы подтвердить соответствие метрологических характеристик каждого конкретного средства измерений регламентированным значениям, средство измерений при выпуске из производства, а также в процессе эксплуатации подвергается метрологической поверке.

Проливная поверочная установка

«Главная» метрологическая характеристика любого средства измерений — это его погрешность. Погрешностью средства измерений мы называем разность между показаниями данного средства и истинным значением измеряемой физической величины. Но здесь есть одна «философская» тонкость. Истинные значения нам неизвестны в принципе — иначе измерения не нужны были бы вовсе. Поэтому мы определяем погрешность во время поверки, сравнивая показания поверяемого средства измерений с неким эталоном (или с показаниями эталонного средства измерений) — и считаем, что в ходе эксплуатации наше средство измеряет с погрешностью не хуже той, которая была продемонстрирована в метрологической лаборатории. Но это — тоже условность, и связана она с тем, что «погрешности бывают разные».

Если мы заглянем, например, в паспорт комплекта термопреобразователей сопротивления, то найдем там такие метрологические характеристики этого средства измерений:

  • диапазон измеряемой разности температур — от 0 до 180°С;
  • погрешность измерения разности температур — ±(0,10+0,002Dt).

Отсюда ясно, что если разность температур, которую мы измеряем, составляет, например, 100°С, то при измерениях при помощи данного комплекта термопреобразователей мы, возможно, ошибемся в ту или другую сторону, но не более чем на 0,3°С. Все просто и понятно. А теперь открываем паспорт какого-либо расходомера и читаем что-то вроде вот этого:

  • предел допускаемой основной относительной погрешности при преобразовании расхода в выходной электрический сигнал — ±1,0%.

Понятно, что «относительная погрешность» — это та, которая нормируется не в литрах (кубометрах), а в процентах. Т.е. при измерениях расхода 1 м3/час данный расходомер «имеет право» ошибаться на 0,01 м3/час, при измерениях расхода 100 м3/час — уже на 1 м3/час. А вот что такое «основная погрешность»? И если есть «основная», то должны быть и некие «дополнительные»?

Да, они есть. Например, температурная погрешность, которая зависит от температуры измеряемой жидкости. Подавляющее большинство отечественных производителей в своей документации о дополнительных погрешностях ничего не пишут. Вероятно, тем самым они намекают на то, что любые дополнительные погрешности пренебрежимо малы по сравнению с основной. Но в руководствах по эксплуатации некоторых приборов можно найти, например, такие сведения:

  • пределы дополнительной погрешности от влияния температуры измеряемой среды — 0,05% на каждые 10°С.

Много это или мало? На 100°С — уже 0,5%, т.е. половина основной погрешности...

Но к чему мы начали весь этот разговор? К тому, что, говоря о погрешности, нужно ясно понимать, что это такое, и о какой именно погрешности идет речь. Производитель, указывая в документации только предел основной относительной погрешности, как бы «минимизирует свои риски». Ведь раз нормирована только эта погрешность (эта составляющая погрешности), то и при поверке — на стенде — будет контролироваться только она, по ней расходомер будет получать допуск в эксплуатацию. А в этой самой эксплуатации — в подвале — будут проявляться и другие, дополнительные погрешности, и они могут быть значительными, но мы о них ничего не знаем и не можем их контролировать. Т.е. расходомер должен ошибаться, например, не более чем на 1%, но может ошибаться и на 1,5%, и еще на сколько-нибудь, и это может быть объяснено, но не может повлечь за собою никаких санкций. Парадокс? Возможно.

Что интересно: в наших «Правилах учета тепловой энергии и теплоносителя» требования к метрологическим характеристикам расходомеров (водосчетчиков) сформулированы так (п.5.2.4.):

«Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с относительной погрешностью не более 2%...».

Данная формулировка порождает вопросы. Во-первых, о какой погрешности идет речь — «основной» или «вообще»? Если в документах моего водосчетчика написано: «основная относительная — 2%», то пригоден ли он для учета «по Правилам»? Ведь если основная — уже 2%, и есть какие-либо дополнительные, то «в сумме» получим больше... Во-вторых, в Правилах говорится о погрешности измерений «массы (объема)». Но подавляющее большинство типов применяемых в теплоучете расходомеров массу не измеряют — это функция тепловычислителя. Мы можем предположить, что погрешность «расчета» вычислителем массы по показаниям «объемных» расходомеров (в таком расчете будут участвовать еще и показания термопреобразователей, и датчиков давления, если они есть) пренебрежимо мала, и можно считать погрешность измерений массы теплосчетчиком равной погрешности измерений объема водосчетчиком (расходомером). Но это, в общем-то, не совсем строгое и не вполне законное предположение.

Проливная поверочная установка

Также некорректно отождествлять погрешность измерений расхода и объема, поскольку расход и объем — это разные физические величины. Все гораздо более понятно, когда речь идет о единых теплосчетчиках: для них нормированы погрешности «каналов измерения» объемов и масс. Но когда мы берем отдельный расходомер, в паспорте которого — «предел допускаемой основной относительной погрешности преобразования объема в выходной электрический сигнал», то понять, соответствует ли он требованиям Правил учета, непросто. Также непросто сравнить его с каким-либо другим расходомером, для которого производитель указал, например, «предел допускаемой относительной погрешности измерений расхода». Разные формулировки, но разный ли в них смысл? Формально — да.

Следующий нюанс: любой расходомер метрологически работоспособен только в каком-то определенном диапазоне измеряемых расходов. Т.е. не может измерять (или может, но с погрешностями, при которых измерения уже не имеют практического смысла) слишком маленькие и слишком большие расходы. Величины нижнего и верхнего пределов диапазона, а также соотношение между ними (так называемый динамический диапазон) зависят от диаметра расходомера (Ду, условный проход) и от его типа. Так, например, качественный электромагнитный расходомер способен измерить меньший расход, чем качественный же вихревой того же Ду; электромагнитный расходомер Ду20 способен измерить меньший расход, чем электромагнитный расходомер той же марки Ду200 — и т.д., и т.п. Для иллюстрации приводим таблицу, в которой указаны диапазоны неких вихревого, ультразвукового и электромагнитного преобразователей расхода, в которых «относительная погрешность преобразования расхода и объема в выходные сигналы» (вероятно, основная), не выходит за рамки ±1%.

Ду Диапазоны (м3/час),
в которых погрешность измерений расхода
не превышает 1%
Вихревой расходомер Ультразвуковой расходомер Электромагнитный расходомер
20 0,5 - 8 0,12 - 6 0,12 - 12
32 1,0 - 16 0,6 - 30 0,3 - 30
50 2,0 - 32 1,4 - 70 0,72 - 72
80 5,0 - 80 3,6 - 180 1,8 - 180
Дин. диапазон 1:16 1:50 1:100

При этом производитель для тех же расходомеров в рекламе может указывать большие динамические диапазоны: например, 1:100 для ультразвукового и т.д. Это не обман: просто «широкий» диапазон делится на поддиапазоны: «внизу» (например, от 0,7 до 1,4 м3/час для Ду50) погрешность не превышает 3%, «вверху» (от 1,4 до 70 м3/час)1:100 не превышает 1%, что и отражено в нашей таблице. А, например, для нашего вихревого «рекламный» диапазон составит 1:32, но в его нижней части (например, от 1,0 до 2,0 м3/час для Ду50) погрешность нормирована на уровне 1,5%. Таким образом, сравнивать эти «1:32» с «1:100» ультразвукового расходомера напрямую нельзя; корректно сравнивать только те диапазоны, в которых для данных расходомеров нормирована одинаковая погрешность.

Кстати, частично процитированный нами выше п.5.2.4 Правил учета более полно выглядит так:

«Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с относительной погрешностью не более 2% в диапазоне расхода воды и конденсата от 4 до 100%».

«От 4 до 100%» — это динамический диапазон 1:25, т.е. значение расхода на нижней границе составляет 4% или одну двадцать пятую часть от значения на верхней границе. По приведенной нами выше таблице видно, что ультразвуковой и электромагнитный расходомеры укладываются в эти рамки «с большим запасом»: у них погрешность не превышает 1% в диапазонах 1:50 и 1:100 соответственно. Вихревой также уложился: хотя в таблице видим диапазон всего 1:16, но из пояснений под таблицей знаем, что у данного прибора погрешность не превышает 1,5% в динамическом диапазоне 1:32.

Итак, из всего вышесказанного должно стать понятно, что, оценивать или сравнивать метрологические характеристики различных расходомеров можно только тогда, когда они, образно говоря, «приведены к общему знаменателю». Т.е. когда речь идет об одних и тех же составляющих погрешности и о диапазонах, в которых погрешности рассматриваемых приборов одинаковы.

Очень часто в разговорах применительно к расходомерам используют понятие «класс точности». Например, говорят: «наш расходомер имеет класс точности 1%». Однако согласно общепринятому определению (см. «РМГ 29-99. Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Метрология. Основные термины и определения») «класс точности — это обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность». Поэтому расходомер, у которого предел основной относительной погрешности — 1%, нельзя назвать расходомером «класса точности 1%», ведь в эту «цифру» не входят ни дополнительные погрешности, ни «другие характеристики, влияющие на точность».

«Диаметры» расходомеров

Рассуждая выше о диапазонах измерений, мы упомянули такую характеристику расходомеров, как их «диаметр». Собственно, говорить «диаметр расходомера» не совсем корректно, ведь «в общем и целом» расходомер представляет собою не цилиндр и не шар. У него есть некие габаритные размеры, из которых с т.з. монтажа наиболее важным является длина. А диаметр в общем случае есть у проточной части. Но мы обычно говорим не о каком-то реальном диаметре, а о таком параметре, как условный проход. Его обозначают как Ду (у нас) или DN, как принято на Западе. Часто пишут «Ду — столько-то миллиметров», но это тоже неграмотно. Ведь по определению «Ду (DN) — это параметр, принимаемый для трубопроводных систем в качестве характеристики присоединяемых частей. Параметр Ду не имеет единицы измерения и приблизительно равен внутреннему диаметру присоединяемого трубопровода, выраженному в мм, округленному до ближайшей величины из стандартного ряда». Таким образом, труба Ду100 может иметь внутренний диаметр и 95, и 105 мм — с расходомерами же все еще сложнее.

Проточная часть расходомера

Дело в том, что проточные части различных преобразователей имеют различные конфигурации. Например, у некоторых расходомеров вы можете увидеть конусообразное сужение «на входе» и такое же конусообразное расширение «на выходе». А есть приборы (в частности, электромагнитные), у которых проточная часть вообще имеет прямоугольное сечение. Поэтому «расходомер Ду100» — это в общем случае расходомер, который имеет фланцы Ду100 для присоединения к трубопроводу, но «проход» для воды внутри него совсем необязательно имеет диаметр около 100 мм (и уж точно не 100,00 мм ровно).

Также очень редко расходомер какого-либо Ду монтируется в трубу того же самого Ду. Дело в том, что расходы (скорости) теплоносителя в системах теплоснабжения, как правило, невелики. А преобразователи расхода, как мы уже упоминали выше, не могут измерять слишком маленькие расходы. И если, например, расход в трубе Ду100 не превышает, скажем, 5 м3/час, то для обеспечения корректных измерений мы должны будем эту трубу «заузить». На сколько? — зависит от того, какой именно расходомер мы планируем применить. Вернитесь к нашей таблице с диапазонами: в случае с электромагнитным расходомером это может быть Ду80 или 50, в случае с ультразвуковым — Ду50 или 32... впрочем, чрезмерное уменьшение диаметра может плохо повлиять на гидравлику системы, особенно если не настраивать ее дополнительно.

Для изменения диаметра трубопровода в месте установки расходомера и возврата на прежний диаметр после этого места используются конические переходы (конфузоры — сужения и диффузоры — расширения). При этом сразу после перехода расходомер не ставится: для «успокоения», формирования равномерного потока необходимо, чтобы и до, и после преобразователя были прямолинейные участки, Ду которых соответствует Ду расходомера. Протяженность этих участков указана в документации на расходомер каждого конкретного типа, однако общее правило таково: чем они длиннее, тем лучше.

Расходомеры в узле учета: Ду трубопровода больше, чем Ду расходомеров

Таким образом, расходомер подбирается не по Ду трубы, на которую он должен быть установлен, а по диапазону расходов, которые он должен измерять. Чаще всего в месте монтажа расходомера приходится делать переход с исходной трубы на трубу, Ду которой соответствует Ду выбранного преобразователя, а для присоединения использовать фланцы (или, например, резьбовые фитинги) данного Ду. Ду не имеет единицы измерения, внутреннему диаметру проточной части расходомера равен лишь приблизительно или не равен вовсе. Стандартные значения Ду преобразователей расхода (расходомеров, водосчетчиков) — 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200 и т.д. При этом необязательно расходомер любого типа выпускается на каждый из Ду этого ряда.


На этом нашу лекцию о преобразователях расхода мы снова прервем. В следующий раз поговорим о типах расходомеров, а потом уже перейдем к тепловычислителям и теплосчетчикам «в сборе».